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Outlines

Interactions In nature and particle
classification

Physics of Protons and Heavy lons
How does a cyclotron work?

Monarch Cyclotron and OUHSC
Cancer Center
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Quarks and

hadrons

There are 6 quarks
and 6 anti quarks
having fractional
Electric charge
Composite particles
made of quarks are
hadrons

Proton Charge =1
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Leptons

Al

* The other type of matter particles are the
leptons.

* There are six leptons, three of which
have electrical charge and three of
which do not. They appear to be point-
like particles without internal structure.
The best known lepton Is the electron

(e-).
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Nucleus is made of nelJtEq\ﬁ
and protons, when theyzge &
composite of quarks /77

1.6 fm
e

4.8 fm




Hadron Therapy

« Beam of particles are made up of quarks and
anti quarks

* Proton

* Neutron

* Pion

* Anti-proton

* Light and Heavy lons
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History of Protons and

1919 Rutherford proposed existence of protons
1930 E. O. Lawrence built first Cyclotron

1946 Robert Wilson proposed proton therapy
1954 Tobias et al treated first patient with proton at LBL
1957  First patient was treated with helium ion at LBL
1961 Kjellberg et al treated patients with proton at HCL

1972 MGH received first NCI grant for proton studies at HCL
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History of Protons and

1975 First patient was treated with neon ion at|l B
1991 First hospital-based proton facility at LLUMC
1992 Heavy lon therapy program closed at LBL
1975 —-1992 433 patients were treated at LBL with neon ion
1994 Patient treatments with carbon ions at HIMAC, Japan
1996 Patient treatments with carbon ions at PSI, Switzerland

1997 Patient treatments with carbon ions at GSI, Germany
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History of Protons and

2012

36 proton (12 in USA) and 6 carbon ion facilities
worldwide treating patients; treated over 93000
patients with proton and over 10000 patients with
carbon ion

2013

35 proton and 5 carbon ion facilities worldwide are
currently being planned
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Proton Physics

Electromagnetic energy loss of protons

O [|CRU water
o ICRUair
A ICRUgadalinium

o
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it
=
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=

proton energy (Mew)

Mass Electronic Stopping Power is the
mean energy lost by protons in
electronic collisions Iin traversing the
distance dx in a material of density p.

™~ S/p = 1/p[dE/dx] o 1/v2

Where v = proton velocity

Relative Dose (%)

Depth in Water[cm]
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Normalized Bragg peaks

Normalized (at peak) Bragg Curves for Various Proton Incident Energies
Range Straggling will cause the Bragg peak to widen with depth of penetration

100 Me'w
130 MeW'
180 Me''
180 MeW'
200 MeW
225 MeW
250 MeW

20
Depth in Water {cm)

Normalized (at entrance) Bragg Curves for Various Proton Incident Energies

— 100 MeV
—— 130 MeV
150 MeW
180 MeaW
— 200 MeV
— 225 MeV
250 MeaV

Relative Dose

Depth in Water {cm)
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Normalized Bragg peaks

(carbon ions)
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Schardt and Elsasser, 2010
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Protons scatter due to elastic coulomb
Interactions with the target nuclei.
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« A certain fraction of protons undergo nuclear
interactions, mainly on 1O

 Nuclear interactions lead to secondary particles

and thus to local and non-local dose deposition
(neutrons!)

* |In passive scattering systems neutrons are
produced in the first and second scatterers,
modulation wheel, aperture, range compensator
In addition to those produced in the patient.
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Fundamental Things
to Remember about
Protons

15MV Photons * Protons Stop!

SOBP Protons  Photons don’t stop.

_~ Photons
e

 Proton dose at depth
(target) is greater than
dose at surface.

Relative Depth Dose [%]

 Photon dose at depth
y (target) is less than




qm University of Oklahoma

Health Sciences Center ./\ \
Bragg peaks of protons b7
carbon ions '
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Schardt and Elsasser, 2010
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175 MeV proton, 325 MeV/U carbon, 450 MeV/u neon have 20 cm range in water.

Schardt and Elsasser, 2010



Radiobiological Properties
(RBE)

— Photon
—— Proton

Survival

Dose [Gyl
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RBE values in vivo (center of SOBP; relative to °°Co)

2.5

1.07 £ 0.12

Int. J. Radiat. Oncol. Biol. Phys. 2002;

Dose per fraction [GY]

Mice data: Lung tolerance, Crypt regeneration, Acute skin reactions,
MASSACHUSETTS Fibrosarcoma NFSa
@ GENERAL HOSPITAL EBEER HARVARD

\i28/ MEDICAL SCHOOI

CANCER CENTER e

Paganetti et al.:
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Proton therapy: RBE =1.1

bio-effective dose

DOSE physical dose

DEPTH



How does a
cyclotron work?

-~ wm RADIO
" TRANSMITTER
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Cyclotron

The magnetic field makes these ions move in circular orbits.
The higher the momentum of the ion, the larger the radius of the orbit.

S

DO
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EXTRACTION =— MAGNET AND

FOIL \ VACUUM

TRANSMITTER




EXTRACTION =—— MAGNET AND

FOIL \ VACUUM

EXTRACTED

TRANSMITTER




3. H-1ons orbit thro
180 degrees

EXTRACTION =— MAGNET AND
VACUUM

EXTRACTED

TRANSMITTER
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4. Dee's switch voltag@ (ES \
ions get accelerated agai 1{3

EXTRACTION =— MAGNET AND

VACUUM
TANK

EXTRACTED
BEAM

TRANSMITTER
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5. This cycle is repeated aboutge: i — \

hundred times. The ions follow a3 ::’s ﬁ":
trajectory of increasing radius, A “\\ z}

hit the extraction foil. \

'

EXTRACTION =— NMAGNET AND

VACUUM
TANK

EXTRACTED
BEAM

TRANSMITTER
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ripped off by the collision, and’t
becomesan H+ ion, I.e. a protomn,




hit the extraction foil. The directi
magnetic force also changes, an

=— IMAGNET AND
VACUUM
TANK

DEE

EXTRACTED
BEAM

TRANSMITTER
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Typical Accelerators

Hitachi 250 MeV synchrotron ring
7 MeV Linac injector

Typical Accelerators
used in proton
therapy facilities

ACCEL Superconducting Cyclotron

IBA 230 MeV Cyclotron 250 MeV
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_a Proteus 235 Specification
f Woeight : 220 ton Heght : 210 cm  Diameter : 434 cm
Energy : 230McV
Max. extracted beam current : 300nA

RF frequency :106 MHz

Korean Cancer center proton therapy
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Berkeley — 184” =
synchrocyclotron at LBL
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1947 — investigations using 160 MeV protons begins

First patient with proton (1954), with helium (1957) and

with neon (1975) and closure (1992); 433 patients treated with heavier ions
(most of them with 670 MeV/u neon beams). Total of 2340 patients treated

throughout LBL program
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Generation \

Proton
Therapy

Platform
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#25 Compact Proton

* Build upon current Proton Therapy proven techr

* Based on proven technologies from existing centers (HCL,' NEPC;, LLUMC
* Incorporate modern superconducting magnet technology
* Reducing system size and cost, and improving reliability
* Integrated with well established clinical systems

* Delivering state-of-the-art patient care: Radiographic and Cone Beam CT IGRT,
Robotic Couch, Treatment Planning, R&V

* Pass along Proton Therapy system manufacturing cost reduction
to cancer care centers

* Giving physicians and patients greater access to proton therapy




The University of Oklahoma

Health Sciences Center

System

« Modern proton therapy platfo rfff

 Single Room Solution — 44/;,'/
Al

* Advanced clinical treatment cap
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Inner (treatment) Gantry
-

Outer (cyclotron) Gantry

Accelerator module

Couch




Superconducting
Synchrocyclotron

A 10 Tesla Superconducting Magnet

enables a smaller, lower cost gantry
mounted Cyclotron.

Stfl[/ﬁiygr
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50+ years of Clinical Life Testing (>100 hours @

i/ \ %2%2

0 20 40 60 80 100120 140 160 180 200 220

_ * Energy: 254 MeV
“One push button” Tx delivery - ¢ pose Rate: 2 to 4 Gy/min

similar to conventional RT e Final Spot Size: 1.3x 1.3 mm o
protocol  80-20 Distal fall off=5.4 mm
* Head leakage measured below 0.1%
(Q=10)

Srz'f/f/ff_fi_f;;{r
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Clinical Workflow Identical to IMRT/IGRT Inclu

e
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3D -CBCT
(Medtronic)
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Oncology Information System and TF’S%
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Treatment Planning: Eclipse, CMS, Pinnacle ( )\1 %\2

Oncology Information System: IMPAC or ARIA

=
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» Workflow identical to conventional linear accelerator
e Schedule, treat, verify and record

TPS R&V Integration Treatment Console

o it e = W
e Wby
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‘The compact |
MIEINVARIEISESS
Proton Therapy
System




Proton Therapy
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State—of-The-Art
_ Proton Theraiy _ j
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Installed One Room at a Time - Single Room_ar Multiple
7 F NN
Rooms % \;

Al

*Most Reliable Approach

— One cyclotron per each room
— No remote beam steering or transport requirements

-

*Most Efficient Approach
— No beam waiting
— Patient treatment room can be interchanged

*Most Economical Approach
— Conventional staff / workflow requirements (no cyclotron room)

— Room investment can be staged
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Staff Requirements

e« Similar requirements to high volun
Linac IMRT / IGRT vault
< 1.5 medical physicists
e 1.5 dosimetrists

4.0 therapists
< Allocate all other fixed personnel (MD, Dept Mgr, etc)
< Assume RCB and Final Aperture outsourced

e Total 7 “variable” staff per work shift and per

vault 1
“Conventional Staffing =p Integrated workflow”
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