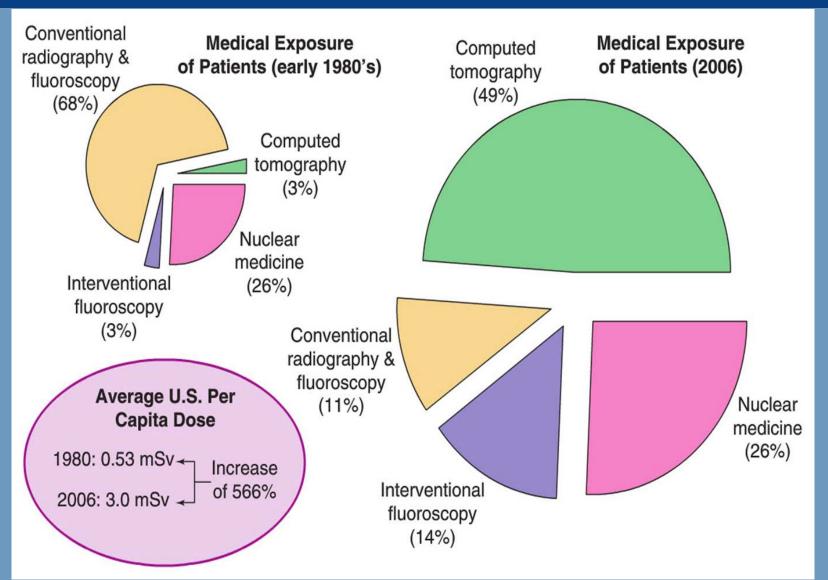


Advances in CT Dose Reduction Technology

John Rong, PhD Department of Imaging Physics MD Anderson Cancer Center Houston, Texas

John.rong@mdanderson.org

THE UNIVERSITY OF TEXAS


Making Cancer History®

- Background
- Concerns about radiation dose from medical CT
- Concept of dose reduction
- Current techniques for dose reduction

Medical Radiation Exposure

Based on NCRP Report No. 160 (2009) "Ionizing Radiation Exposure of the Population of the United States"

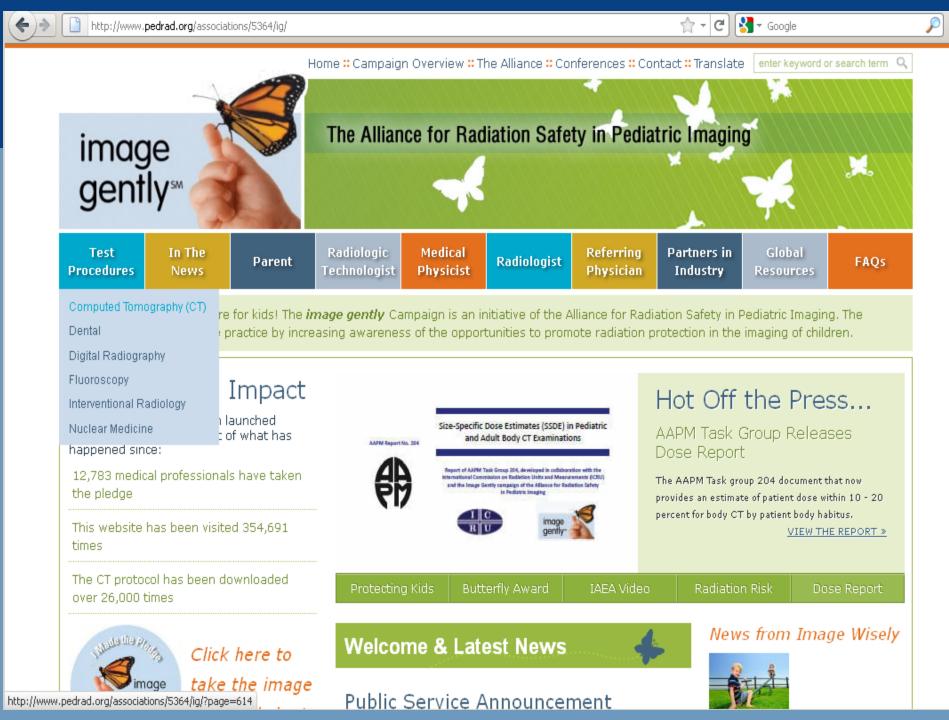
A 2007 Publication on CT Radiation Exposure

The NEW ENGLAND JOURNAL of MEDICINE

HOME	ARTICLES & MULTIMEDIA *	ISSUES *	SPECIALTIES & TOPICS *	FOR AUTHORS *	CME »
------	-------------------------	----------	------------------------	---------------	-------

REVIEW ARTICLE

CURRENT CONCEPTS


Computed Tomography — An Increasing Source of Radiation Exposure

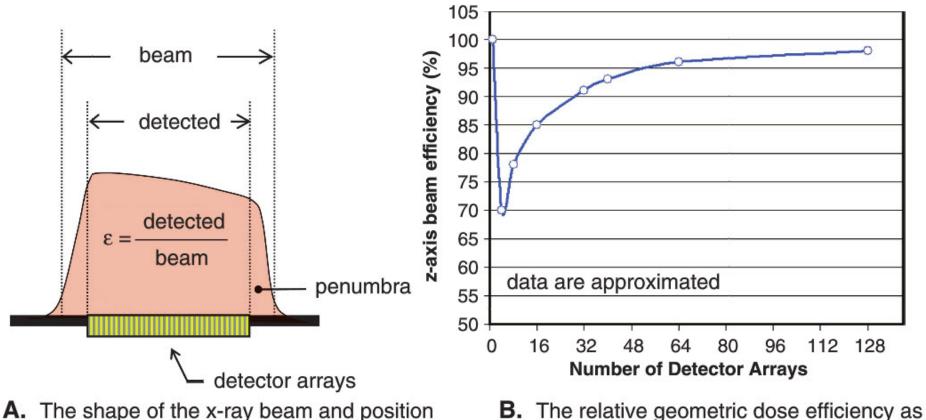
David J. Brenner, Ph.D., D.Sc., and Eric J. Hall, D.Phil., D.Sc. N Engl J Med 2007; 357:2277-2284 | November 29, 2007 | DOI: 10.1056/NEJMra072149

AAPM effort

http://www.aapm.org/publicgeneral/StatementBeforeCongress.asp

Concepts of Dose Reduction

- Many different concepts
- Do more with less (detector efficiency)
- Avoid unnecessary exposures (beam collimation)
- Optimum beam energy for low-contrast detectability and penetration (filtration and kVp)
- Appropriate tube current adapted to body habitus (TCM)
- Advanced reconstruction algorithms for noise reduction (iterative)

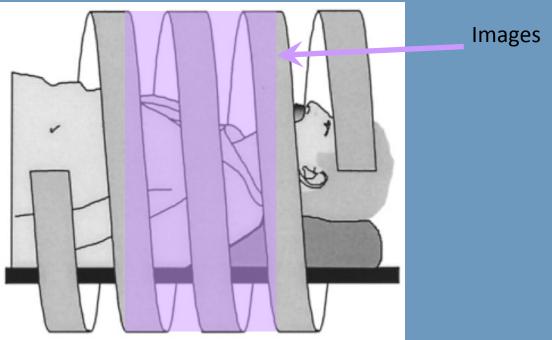

<u>A comprehensive review article:</u>

McCollough et al. CT dose reduction and dose management tools: Overview of available options. Radiographics. 2006;26:503-512.

Dose Reduction Techniques

- Beam collimation
- Organ shields
- Tube current modulation (TCM)
- Auto kV optimization
- Iterative reconstruction

Geometric Efficiency of Radiation Beam

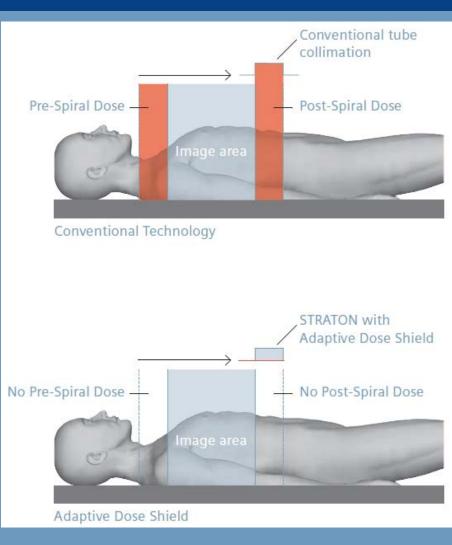

A. The shape of the x-ray beam and positio of x-ray detector arrays are illustrated **B.** The relative geometric dose efficiency as a function of detector arrays is shown

Wider beam width, higher geometric efficiency

- Fewer penumbra less wasted radiation per rotation
- Fewer rotations to cover a scan range
 - Less wasted radiation overall
 - Faster scan time
 - Shorter exposure time (tube heat)
- Reduce dose by ~15%?
- Should the widest beam be always the choice?

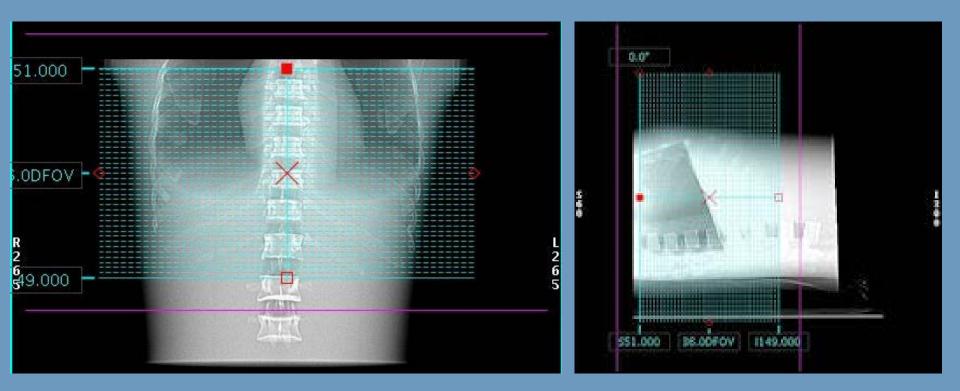
What about Over-Ranging?

- Reconstruction for spiral scan needs data outside of the scan range so to include the selected anatomy in images
- 1-4 additional rotations on each end of spiral scan acquisition

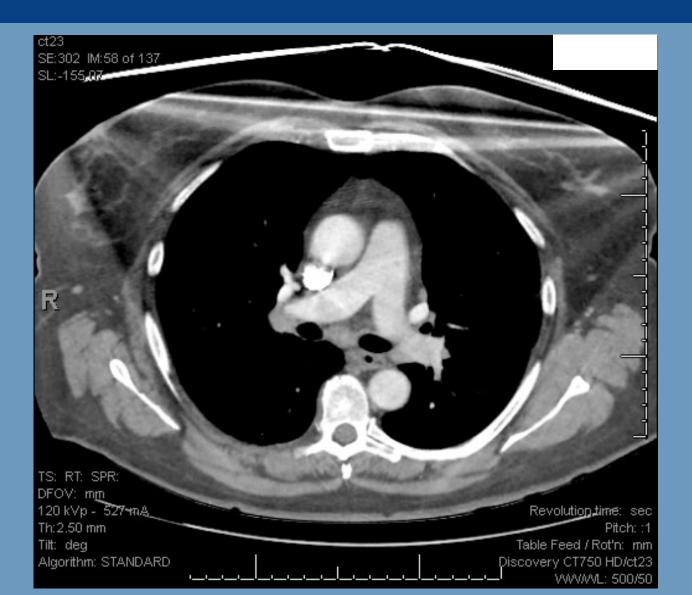

What about Over-Ranging?

- Reconstruction for spiral scan needs data outside of the scan range so to include the selected anatomy in images
- 1-4 additional rotations on each end of spiral scan acquisition
- Delivers additional dose that is NOT accounted for in routine parameters
- Can add substantial dose when wide beam is used (like 40mm for instance)
- The widest beam may not always be the choice!

Siemens Adaptive Beam Collimation


- Independent control of collimator jaws
- Cuts back on over-ranging exposure

 At start of helical acquisition
 At end of helical acquisition
- Claim dose reduction of up to 25%
- Will depend on beam width & pitch


SOMATOM Definition Flash brochure

GE Dynamic Z-Axis Beam Tracking

GE HD750 User's manual

Bismuth Shields

Bismuth Shields: use or not

<u>Advantages</u>

- Only affects IQ in limited area
- Does result in lower dose to breast tissue
- Patients like them
- Radiologists feel they are doing something good

<u>Disadvantages</u>

- Affects IQ
 - Artifacts
 - Alter CT Numbers
 - Increase Noise
- Filters exit beam wastes dose
- Training required (TCM)
- Disinfection required
- Size of shield important

A JACR article Bismuth Shields for CT Dose Reduction: Do They Help or Hurt?

McCollough CH, Wang J, Berland LL: Bismuth Shields for CT Dose Reduction: Do They Help or Hurt? Journal of the American College of Radiology 2011, 8(12):878-879.

More publications from Mayo Clinic:

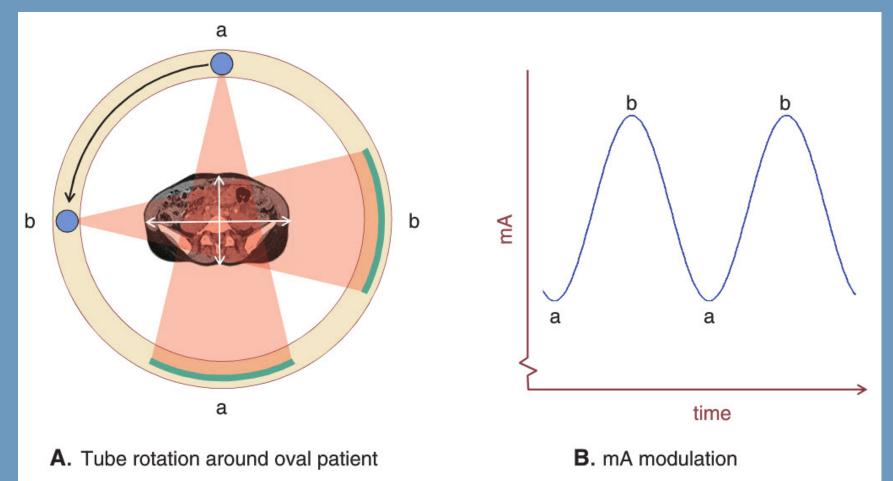
Wang J, Duan X, Christner JA, Leng S, Yu L, McCollough CH: Radiation Dose Reduction to the Breast in Thoracic CT: Comparison of Bismuth Shielding, Organ-based Tube Current Modulation and Use of a Globally Decreased Tube Current. Med Phys 2011, 38(11):6084-6092.

Wang J, Duan X, Christner JA, Leng S, Grant KL, McCollough CH: Bismuth Shielding, Organbased Tube Current Modulation and Global Reduction of Tube Current for Dose Reduction to the Eye in Head CT. Radiology 2012, 262(1):191-8. AAPM Position Statement (2/7/2012) Use of Bismuth Shielding for the Purpose of Dose Reduction in CT Scanning

Bismuth shields are easy to use and have been shown to reduce dose to anterior organs in CT scanning. However, there are several disadvantages associated with the use of bismuth shields, especially when used with automatic exposure control or tube current modulation. Other techniques exist that can provide the same level of anterior dose reduction at equivalent or superior image quality that do not have these disadvantages. The AAPM recommends that these alternatives to bismuth shielding be carefully considered, and implemented when possible.

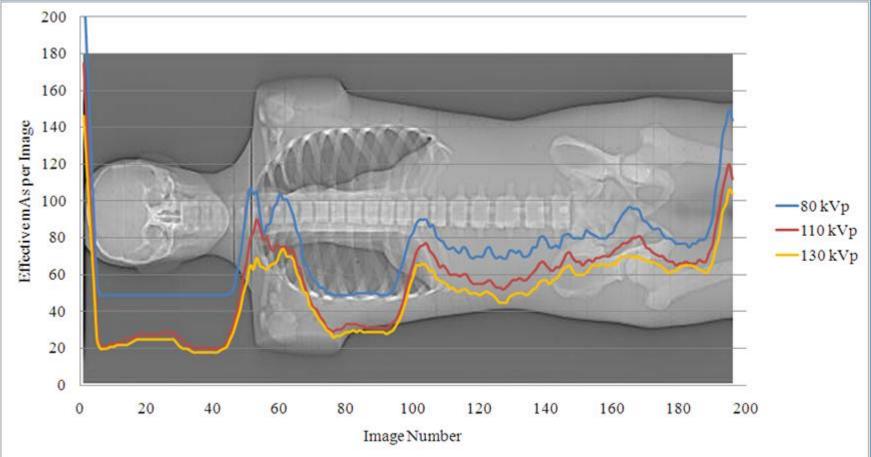
Tube Current Modulation

Tube Current Modulation (TCM) has been a popular and powerful tool for achieving radiation dose reduction.


Image noise (or 'image quality') is expected to be maintained at the same level across patient anatomy of different shapes/sizes.

TCM: two schemes

- Angular (in-plane, x/y-axis) modulation
- Longitudinal (z-axis) modulation


TCM: angular modulation

 Based on attenuation map for each rotation (patient size) to achieve "right sizes" mA in x/y plane

TCM: longitudinal modulation

 Based on shape of each patient to achieve "right shapes" mA along z-axis

Courtesy of Cheenu Kappadath, PhD

Example Tube Current Modulation (TCM) on GE HD750

Effects of TCM

- Can result in radiation dose decrease
 o Average to small patients
- Can also result in radiation dose increase
 Large to extra-large patients

Must understand HOW a TCM scheme works!

TCM terms used by vendors

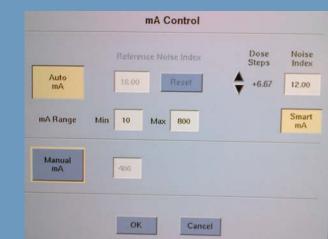
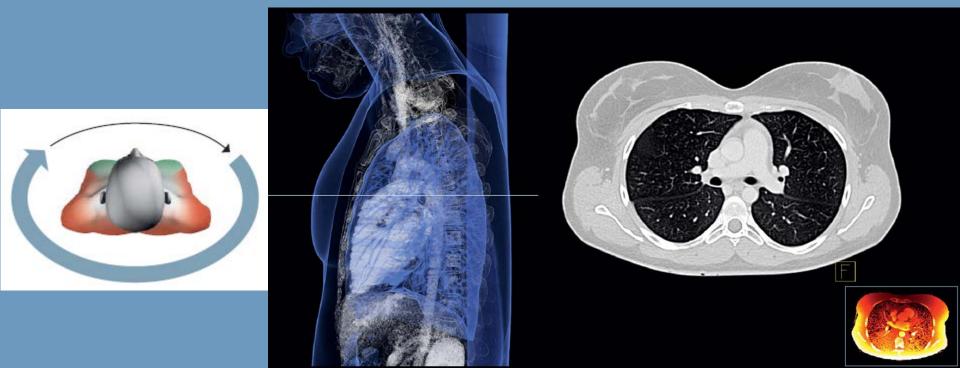

- GE: Smart Scan, Auto mA, Smart mA
- Siemens: CareDose, CareDose4D, XCARE (new)
- Philips: Angular, DOM, Z-DOM, DoseRight
- Toshiba: SureExposure, SureExposure3D

Image Quality Indicator

- GE: Noise index
- Siemens: Quality reference mAs
- Philips: Reference image
- Toshiba: Standard deviation

TCM on GE

- Auto mA: longitudinal TCM (can be used alone)
- Smart mA: angular TCM (*can <u>only</u> be used with Auto mA*)
- Based on scout images
- Preset Noise Index (NI): to achieve predicted noise level (in terms of standard deviation) in 20 cm water phantom with Standard recon algorithm; and, is expected to maintain the same noise level across different shapes/sizes
- Choice of NI depends on factors such as:
 - recon algorithm (kernel)
 - image thickness



TCM on Siemens

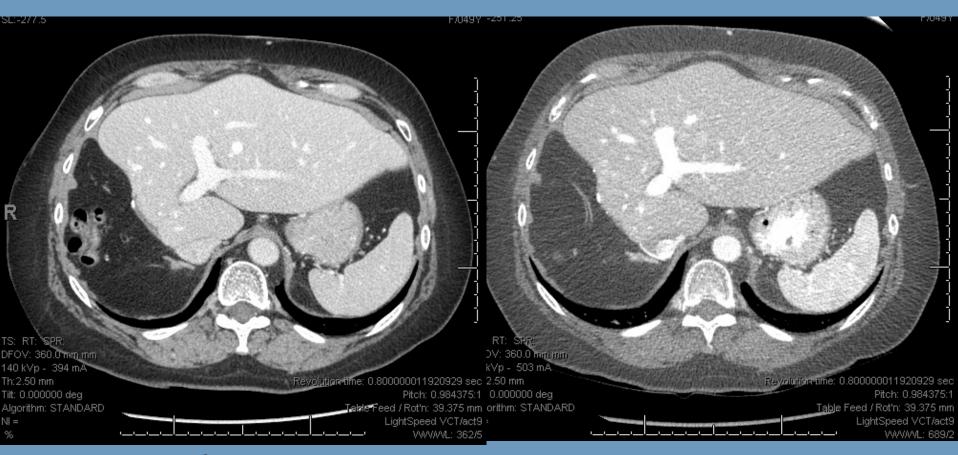
- Quality Reference mAs (CARE Dose 4D)
- For each exam select mAs/pitch for a 70 kg patient
- In pediatric mode reference patient is 20 kg (5 yr old)
- Uses empirical impression of image quality algorithm
- Topograms (scouts) are used to predict tube current along x, y, and z axes
- Scaling for varying patient size can be "weak", "average", or "strong"
- Online real time (180 degree lag) feedback for fine-tuning (hence "4D")

Siemens XCARE

- Dose reduction specific to sensitive organ (e.g. breast)
- Tube current OFF within a certain range of projections, minimizing direct exposure dose to sensitive organ
- Up to 40 % dose reduction to sensitive organ

SOMATOM Definition Flash brochure

Considerations in using TCM


- Use in exams where max changes in attenuation path

 Head/Neck/Shoulders
 Chest/Abd/Pelvis
- Use for exams where patient size quite variable
 Pediatric protocols
- Use in routine head exams? Not typically recommended
- NEVER in perfusion studies! (think Cedars-Sinai)

kV optimization

- Growing interest in optimizing kV settings below 120
- Lowering kV results in dramatic dose decrease with a constant mA; however, noise increases significantly.
- Push for this is some specialized exams (low-contrast, e.g. liver imaging)
- Lowering kV with TCM can increase image contrast in certain clinical exams and keeps the image noise constant. However, very little effect on the radiation dose.

Patient Example

140 kV NI = 10

80 kV NI = 10, max mA 500

Exam Description: CAP W CON-- LIVER

Dose Report					Dose	decrea	ased by	76%		
Series	Туре	Scan Range (mm)	CTDIvo (mGy)		LP /-cm)	Phantom cm				
1	Scout	-	_		_	_				
2	Helical	1193.500-1463.500	26.19	827	7.72	Body 32				
200	Axial	1332.250-1332.250	10.58	5.	30	Body 32				
4	Helical	1195.000-1405.000	41.86	107	1.95	Body 32				
4	Helical	1195.000-1405.000	4 1.8 5	107	1.70	Body 32				
4	Helical	1406.500-1711.500	54.39	190	9.35	Body 32		26 r		
7	Helical	130.000-1360.000	19.13	720	0.20	Body 32		201	nSv using	OUKV
7	Helical	1195.000-1445.000	33.40	988	3.86	Body 32	LIV)			
7	Helical	1530.000-1645.000	37.58	605	5.41	Body 32				
Total Exam DLP: 7200.49					Dose F	Report				
108 mSv using 140kV			Series 1	Type Scout		n Range (mm) -	CTDIvol (mGy) -	DLP (mGy-cm) -	Phantom cm -	

Scan Range (mm)	CTDIvol (mGy)] mC)
-	-	
5.500-1390.500	8.32	21
5.000-1285.000	2.34	

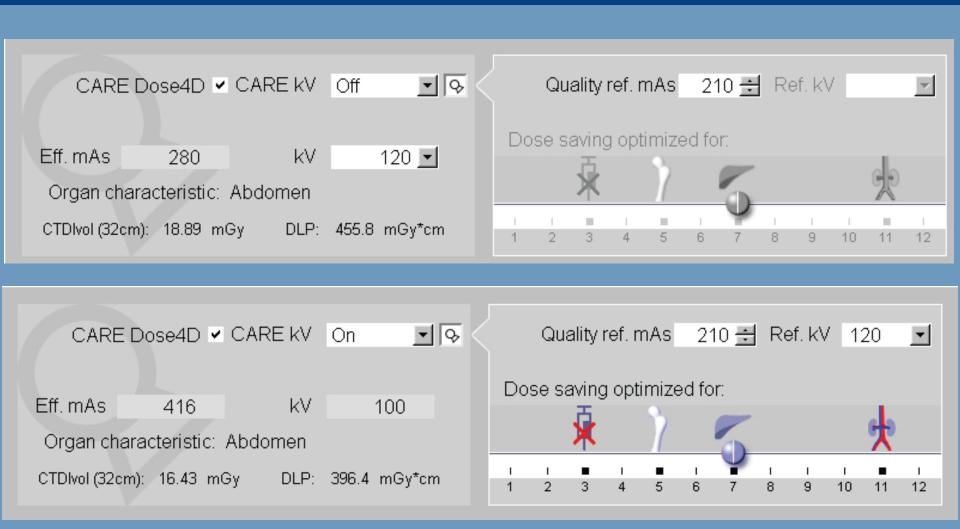
2	Helical	1175.500-1390.500	8.32	217.28	Body 32
200	Axial	1285.000-1285.000	2.34	1.18	Body 32
4	Helical	I178.750-I343.750	10.40	219.58	Body 32
4	Helical	I178.750-I343.750	10.40	219.58	Body 32
4	Helical	1345.000-1640.000	8.32	283.86	Body 32
7	Helical	11.250-1331.250	11.86	446.53	Body 32
7	Helical	1181.500-1406.500	8.32	225.60	Body 32
7	Helical	1538.000-1613.000	8.32	100.77	Body 32
		Total B	1714.38		

When is low kV the best option?

When dose is a concern:

 Drop from 120kV to 80kV
 Dose drops in half without any other changes
 Neuro CT Perfusion protocols (80 kV)
 Newborns

• Pediatric patients! (80kV, 100kV)


Auto kV

- Care-kV option on newer Siemens scanners

 Suggests kV to use based on localizer analysis
 Very often selects kV lower than would be assumed
- kV Assist option on GE scanners with newer console

 Use the localizer images
 Optimized for clinical tasks

CARE-kV

CARE-kV

kV	mAs	Pitch	CTDI
80	462	1.00	
100	297	1.00	-20%
120	210	1.00	11.00
140	147	1.00	+5%

CARE-kV

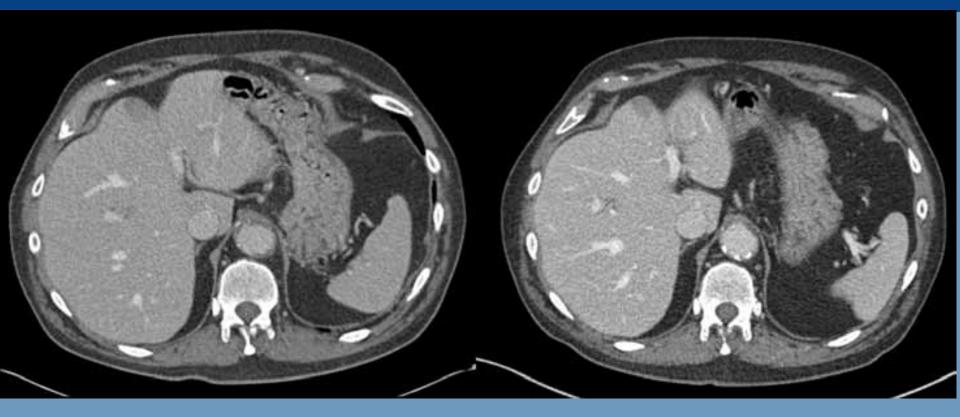


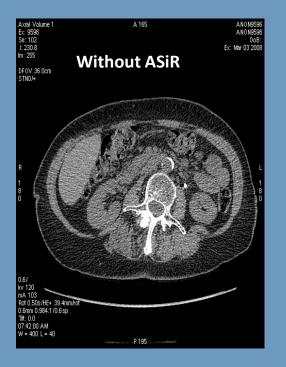
Figure 4. Siemens CARE-kV brochure.

Images showing dose savings of 14% using CARE kV. Original image on left (120 kV, eff. mAs 199), ref. mAs 240, CTDI 15.31mGy. CARE kV on right (100 kV, eff. mAs 324) ref. mAs 337, CTDI 13.33 mGy.

Images Copyright 2010, Mayo Foundation for Medical Education and Research.

kV Assist

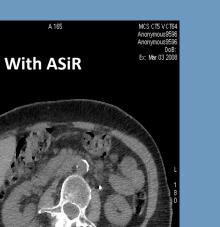
Clinical Modes	Scan situation	Region of primary importance	
CT Angiography (CTA)	iodinated contrast agents are used	enhanced tissue regions	
Bone, non-contrast (BONE)	contrast agents are not used	bony regions	
Soft Tissue, contrast	CTA: CT Angiography	both enhanced and non-enhanced tis-	
Soft Tissue, non-con	Bone: Bone. Non-contrast C+: Soft Tissue. Contrast-enhanced	Dose Savings	
kV Assist	C-: Soft Tissue. Non-contrast	 ↓ + ^ Normal ↓ - 	
kV Rar	ge Min <u>80 –</u> Max <u>140 –</u>	Optimize WW / WL	
Manual kV	80 100 120	140	
	OK Cancel		


kV Assist

Original liver image (left), lower kV image with higher iodine contrast and noise (middle) and same image as middle with WW and WL adjusted (right) GE HD750 User's manual

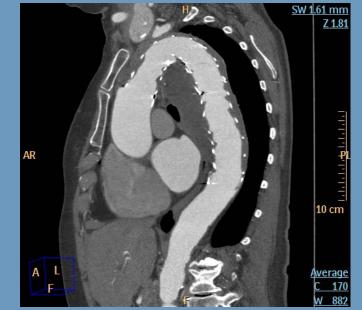
Iterative Reconstruction

- GE ASiR (adaptive statistical iterative recon), MBIR (model based iterative recon)
- Philips iDose
- Siemens IRIS (iterative recon in image space), SAFIRE (sinogram affirmed iterative recon)
- Toshiba AIDR (adaptive iterative dose reduction)

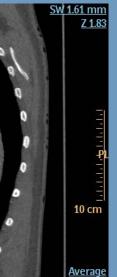


Full dose without IRIS

P 195

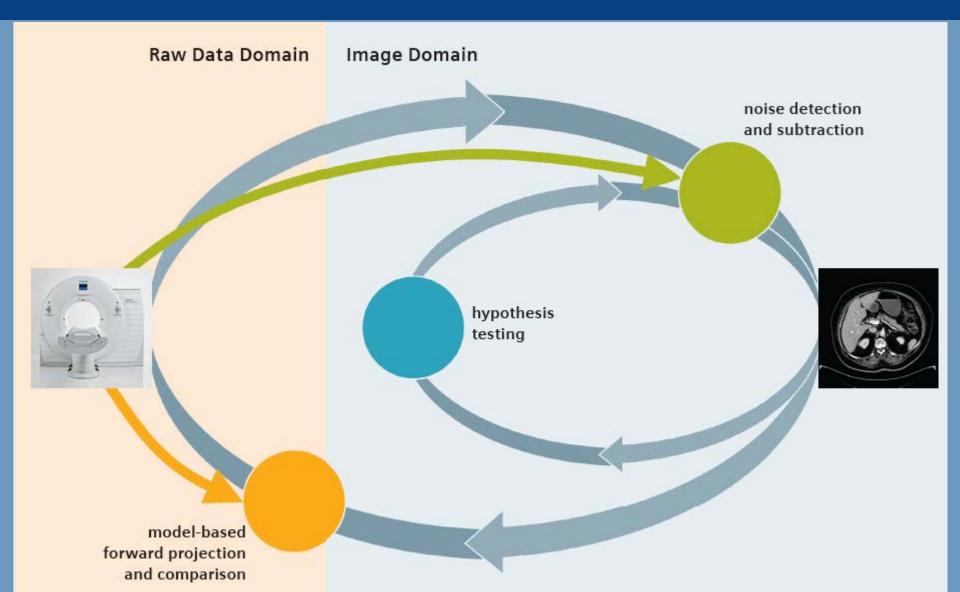

Axial Volume 3 Ex: 9596 Se: 301 I: 230.8 Im: 255

DFOV 36.0cm STND/+


0.6/ kv 120 mA 103 Ret 0.50s/HE+ 39.4mm/rof 0.6mm 0.984:1/0.6sp Th: 0.0 07:42:00 AM W = 400 L = 40

FBP at full dose

70% less dose with iDose⁴

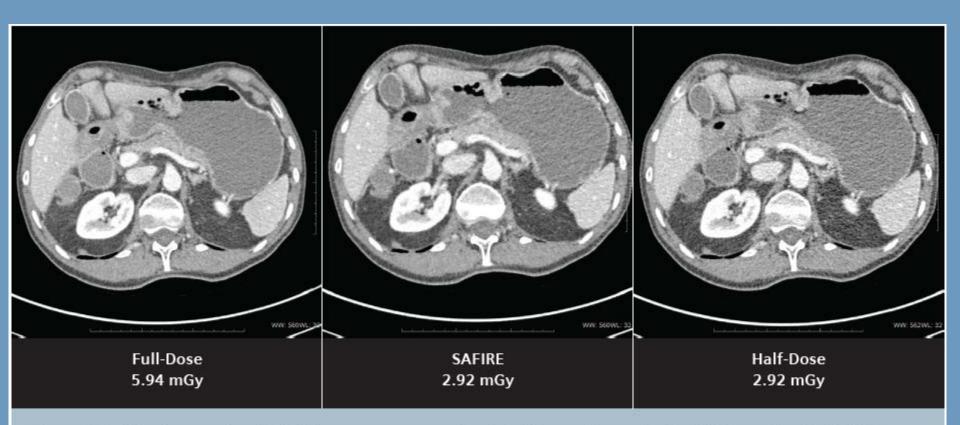

<u>C 260</u> W 1580

Iterative Reconstruction: ASIR & VEO

Recon Option				
Recon Mode	Cardiac Filter			
Full Plus	None C1 C2 C3			
	Temporal Enhance			
	On Off			
IQ Enhance	GSI Filter			
Window Width Window Level	None G1			
300 1000				
ASiR Setup	GSI			
	QC			
GS10 10% None GSI ASIR GS20 20%	Mono keV 70 GSI MARs			
GS30 30%	Material Pair Water Iodine: Wa(I)			
Veo IR Setup: Incompatible GS40 40%				
<u>GS50_50</u> %	Flip/Rotate			
Veo IR	None FLR FTB FTB/FLR			

OK

Iterative Reconstruction: SAFIRE


SAFIRE configuration

6 Morblist Item(s) re

14 Eeb 2012 15:05

SAFIRE images

Example 1: CT enterography at 80 kV. Images were reconstructed at 2-mm slices using the B40 kernel for the full-dose and half-dose exam. The corresponding I40 kernel was utilized for reconstructing the half-dose SAFIRE images. Images Copyright 2011, Mayo Foundation for Medical Education and Research.

Thank you for your attention!