Benign Diseases Review 2014

Tony Eng, M.D.

Radiation Therapy of Benign Diseases

- **Eye/Orbit:** pterygium, Graves's ophthalmopathy, orbital pseudotumor, macular degeneration
- Skin: keloids, plantar warts, keratoacanthoma
- **Blood vessels:** AVM, hemangioma, coronary re-stenosis
- **CNS:** benign brain tumors, trigeminal neuralgia
- Soft tissues: desmoid, Peyronie's disease
- **Bones:** heterotopic ossification, giant cell bone tumors, histiocytosis, ameloblastoma
- <u>Glandular tissues:</u> gynecomastia, ovarian ablation, sialorrhea
- Lymphoid tissues: hypersplenism, organ transplant, TLI auto-immune disorders

Discontinued uses of XRT

- Infections
- Abortion
- Peptic ulcer
- Acne
- Inflamatory conditions

http://www.museumofquackery.com/devices/shoexray.htm

Shoe-Fitting X-ray Unit

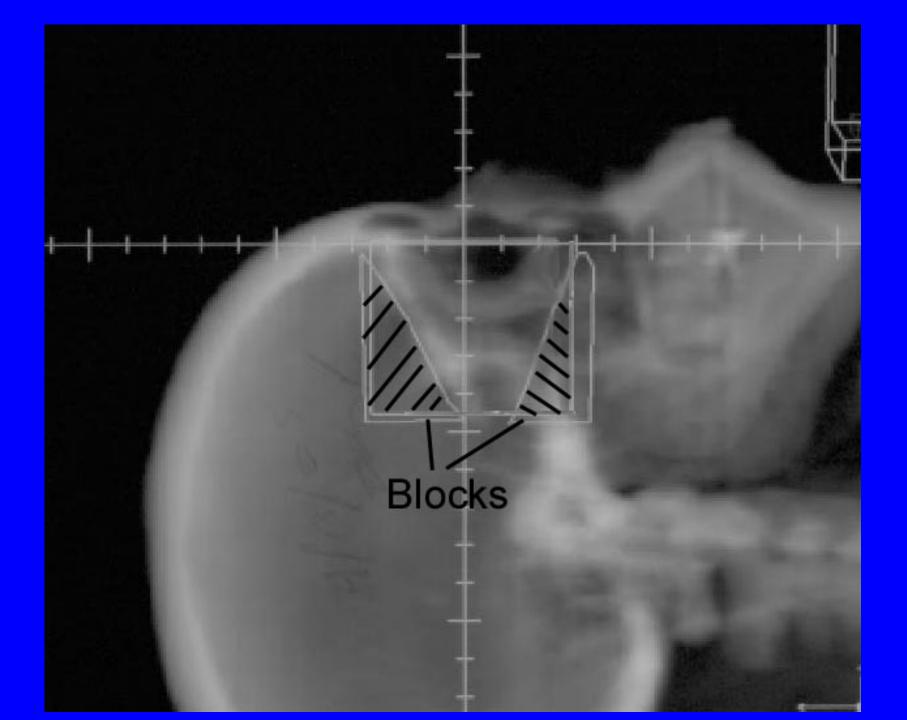
General considerations

- Proper selection of radiation modality, dose, fractionation, and organ at risk.
- Careful on treatment depth and shielding
- Avoid treating infants and children with radiation
- Avoid organs sensitive to low-dose radiation: thyroid, gonads, female breast, bone marrow, eye

Selected Benign Diseases

- Thyroid Associated Opthalmopathy
- AVM
- Orbital Pseudotumor
- Macular Degeneration
- Pterygium
- Keloids
- Gynecomastia
- Heterotopic Ossification
- Peyronie's Disease
- Coronary Re-stenosis (Endovascular radiation)

Thyroid-associated Ophthalmopathy


- Bilateral exopthalmos
- Extraocular muscle dysfunction
- Diplopia
- Blurred vision
- Eyelid and periorbital edema
- Chemosis= swelling of the eye surface membranes
- Lid lag and retraction
- Compressive optic neuropathy

Treatment

- Treatment of underlying thyroid disorder
- Mild symptoms—no treatment, eye drops, elevating head of bed
- Moderate—steroids, cyclosporine or other immunosuppressives
- <u>Radiation Therapy</u>
- Severe—emergency decompressive surgery

Table 2 Summary of selected treatment results of Grave's ophthalmopathy

Author/year	Number of Patients	Treatment	Results	Comments
Kulig et al. 2004 (<mark>12)</mark>	101	20 Gy /2 weeks + steroids	Donaldson's ophthalmopathy index decreased significantly. Right eye: from 6.35 to 1.2; left eye: from 6.1 to 1.15.	Combined therapy is an effective. Persistent diplopia in 16/101 patients.
Prummel et al 2004 (13)	88 (RT vs. Sham RT)	20 Gy /2 weeks	52% vs. 27% responded	Less need for follow up in RT group
Alpert et al. 2003 (14)	47 (30 with optic neuropathy)	20 Gy /10fx	75% improved. (retropulsion improved in 83 %)	Early intervention (<6 months) better
Pitz et al. 2002 (15)	104 (29 RT, 75 RT + steroids)	10-20 Gy	75% pain improved.25% motility improved75% stable.	No additional benefit seen with steroids. No adverse side effects up to 16 yrs.
Mourits et al. 2000 (17)	60 (RT vs. Sham RT)	20 Gy /10fx	Qualitative improvement (diplopia): 60% vs. 31% Protosis, lid swelling not better.	25% RT patients spared from additional strabismus surgery
Beckendorf et al. 1999 <mark>(16)</mark>	199	20 Gy /2 weeks	26% excellent response;50% partial response.19% stable5% progression.	Patients treated within 7 months after having opthamo-pathy had better responses.

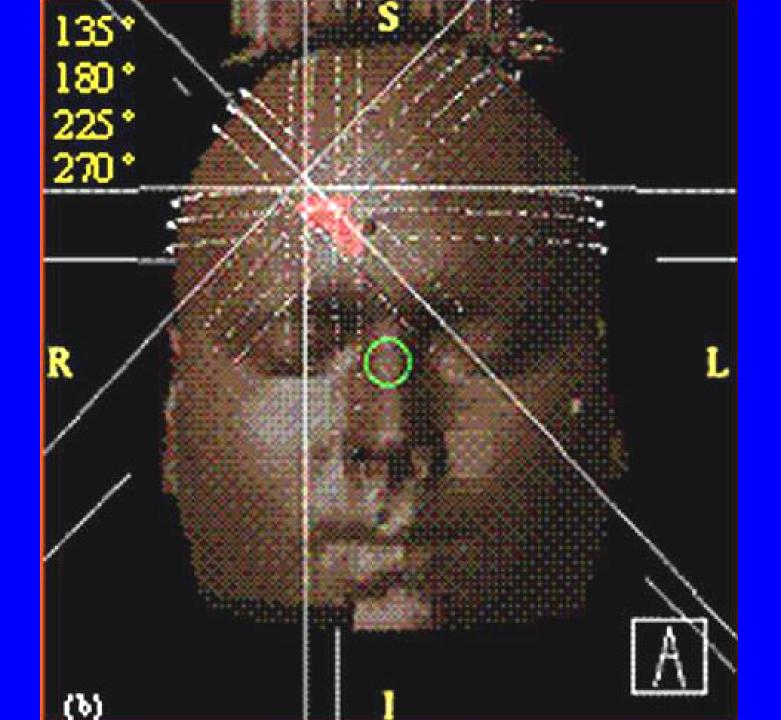
Arteriovenous Malformation (AVM)

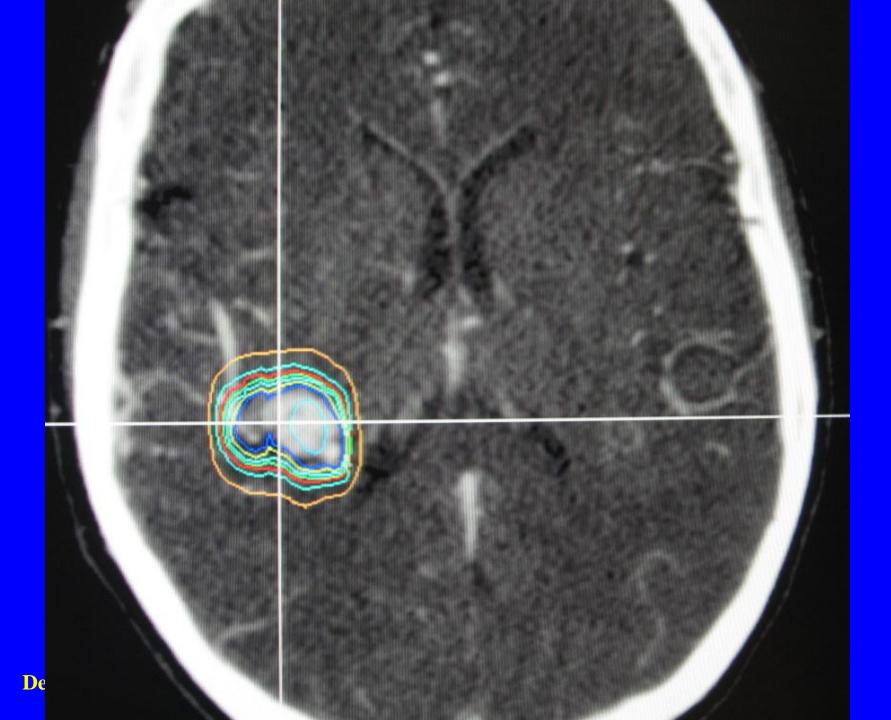
- Complex tangle of abnormal arteries and veins
- Characterized by presence of one or more A-V fistulas creating a high-flow shunt
- Lack a capillary bed
- Thought to develop at embryonic stage of vessel formation

Characteristics

- Course is unpredictable can grow, regress of remain stable
- Prevalence is thought to be around 0.1% or 300,000 in the US

Presentation


- Intracranial hemorrhage
 - 10-15% fatal
 - overall morbidity 50%
- Seizures not caused by hemorrhage
- Headache no consistent characteristic features
- Focal neurologic symptom rare
- Symptoms resolve 70 % after radiosurgery



https://www.emoryhealthcare.org/stroke/treatments/malformation-example.html

Treatment

- Surgical resection
 - Often difficult if lesion has deep feeding or draining vessels
 - Success rate excellent if completely resected
 - Complications 16% permanent neurological deficits in 8%
 - Hemorrhage, damage to surround in brain, edema/swelling
- <u>Stereotactic Radiation Therapy (SRT)</u>

Table 1. Summary of selected radiation treatment results of AVM

Author, Year	Total # Patients	Technique	Dose	Results
Marayuma et al. 2005 <mark>(3)</mark>	500 patients	GKS	20 Gy	91% obliteration at 6 years 6.6% complication rate 5.8% hemorrhage after RS
Vernimmen 2005 <mark>(8</mark>)	64 patients	Protons	10-22 GyE	67% obliteration rate (vol <14cc) 43% obliteration rate (vol <u>></u> 14cc)
Nicolato et al. 2005 <mark>(4)</mark>	63 children, < 16 yrs	GKS	16-26 Gy	77% obliteration rate at 4 yrs 2 with complications No hemorrhage reported
Zabel et al. 2005 <mark>(5)</mark>	110 patients	Linac SRS	18 Gy	67% obliteration at 4 yrs 0% complications 8% hemorrhage after RS
Bollet et al. 2004 <mark>(6)</mark>	118 patients	Linac SRS	10-25 Gy	77% obliteration rate 6.7% complications 6% hemorrhage

Orbital Pseudotumor

- First described in the 1900s
- AKA "Idiopathic Orbital Inflammation", or "nonspecific Orbital Inflammatory Disease"
- Nonmalignant space occupying lesion involves orbital tissue and simulates a neoplasm
- Etiology unknown
- 3rd most common cause of orbital inflammation

Orbital Pseudotumor Clinical Presentation

Typically acute – but can be insidious
Painful

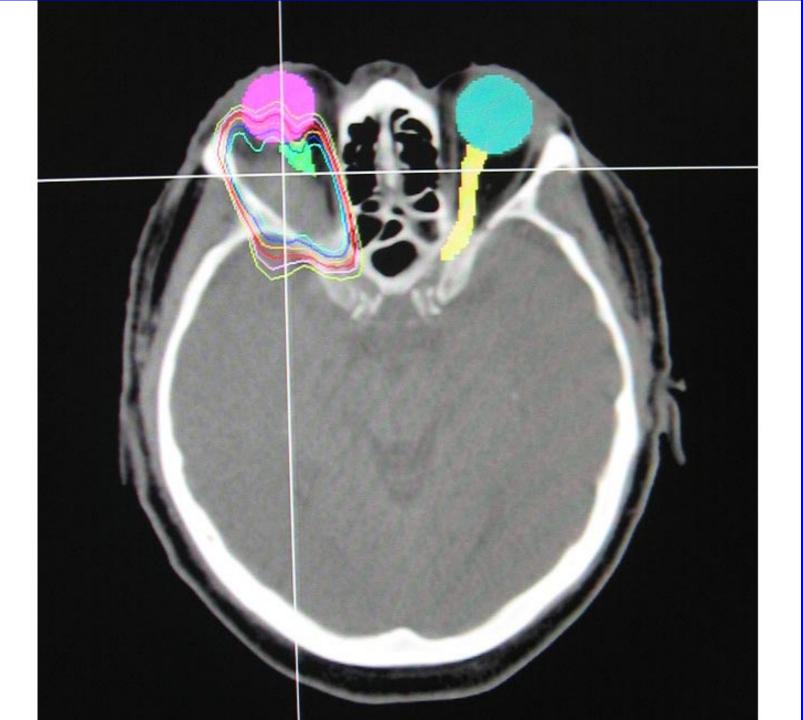
Usually unilateral

No real pattern of muscle involvement

Ocular findings include:

Diplopia

Decreased Visual Acuity


Proptosis

•Edema

Absent systemic symptoms

Treatment

- Systemic Corticosteroids
 - Usually rapid clinical response and resolution of pain
- <u>Radiotherapy</u>
 - 2nd line therapy
 - Adjuvant treatment when incomplete response
 - 1st line therapy if steroids contraindicated
- Immunomodulators/Immunosuppresants

Table 3. Summary of selected radiation treatment results of orbital pseudotumor

Author /year	# Pts (orbits)	RT treatment	Outcomes	Comments
Keleti et al. 1992 (<mark>13)</mark>	28 benign 20 lymphoma 17 indeterminanat	20-30 Gy/10-15 fx's	RT efficacious in all groups. 84% DFS at 42 months med F/U; Benign group did better.	Cataracts=46% of the patients treated with anterior-posterior fields
Lanciano 1990 <mark>(5</mark>)	23 (26)	2000 cGy/10 fx over 2 weeks	Overall CR 66% Soft tissue swelling 87% CR Proptosis 82% CR Extraocular dysfunction 78% Pain 75% CR Durable local 77% (Median f/u 41 months)	70% recurrence during steroid taper, 17% no response to steroids, 13% no steroiods treatment prior to RT.
Mittal et al. 1986 <mark>(14)</mark>	20 benign 12 lymphoma 10 indeterminanat	Conventional	100% ultimate control rate	Very high local control, minimal morbidity
Austin-Seymour 1985 <mark>(1)</mark>	20 (20)	Mean dose 2360 cGy (2000 - 3000 cGy)	75% Complete resolution	Majority steroid refractory disease; No complications.
Sergott 1981 <mark>(8)</mark>	19 (21)	1000-2000 cGy	Improvement 74% (decreased proptosis, lid edema, and conjunctival injection, improved ocular motility and visual acuity)	79% recurrence during steroid taper prior to RT. RT responders remained recurrence free x 25 months f/u with no further steroids.

Macular Degeneration

-Macular Degeneration is a group of progressive eye conditions which involve deterioration of the macula, the central region of the retina.

-The root causes of AMD are still unknown

-Types of Macular Degeneration:

- Age-Related Macular Degeneration
- Juvenile Macular Degeneration (Macular Dystrophy)

AMD

- AMD is the leading cause of irreversible vision loss and blindness in persons over 65 years of age, (the fastest growing segment of the US population)
- Over a 5-year time span, it is estimated that 1 in 3 people over the age of 70 years will develop signs of AMD
- Caucasians > African Americans
- Women > Men

Treatments

- Supportive for most patients
- Laser Photocoagulation
- Radiation (EBRT)
- Photodynamic Therapy (verteporfin)
- Investigational drugs

Table 4. Summary of selected treatment results of macular degeneration

Author, Year	Number of patients/eyes	Treatment	Results	Notes
Jaakkola et al. 2005 (10)	86/88	15 Gy 12.6 Gy (Sr90)	VA loss > 3 lines: Control 84% RT 80%	No long-term (at 35 months) benefits
Marcus et al. 2004 (11)	88 (randomized RT vs no RT)	5 x 4 Gy	At 6 months, 26% vs. 43% 3 line VA loss. At 12 months, 42% vs. 49% 3 lines VA loss.	RT had a short-term benefit in preserving visual acuity.
Prettenhofer, et al 2004 (<mark>12)</mark>	80	14.4 Gy 25.2 Gy	VA deteriorated in 85% (14.4 Gy) and 65% (25.2 Gy) of patients	After 4 years irradiated eyes were similar to the natural course of the disease.
Hart et al. 2002 (<mark>13</mark>)	203 (randomized RT vs. no RT)	12 Gy in 6 fx.	RT better than control group but not statistical significance	Negative trial
Valmaggia, et al. 2002 (14)	161 (prospective double-blinded study)	1 Gy (4x.25 Gy) vs. 8 Gy (4x2Gy) vs. 16 Gy (4x4Gy)	No difference among treatment groups. Classic CNV, initial VA >20/100 benefited more from higher does.	Higher doses resulted in stabilization of the VA without any difference in efficacy.
Schittkowski, et al. 2001 (<mark>15)</mark>	118/126	2 Gy in 2 weeks	VA decreased but most had decreased metamorphopsia and increased color and contrast perception with RT.	8 patients reported epiphora, and 4 patients complained of transient sicca syndrome.

- Often bilateral
- Almost always situated at the nasal or temporal limbus
- Associated with prolonged UV exposure
- May be associated with chronic dryness, inflammation, and exposure to wind and dust or other irritants
- Prevalence increases with proximity to equator
- Encroaches on cornea in wing-like fashion

Pterygium Treatment

- Observation
- Excision indicated if persistent irritation, vision distortion, significant (> 3-4 mm) and progressive growth toward visual axis, restricted ocular motility, and atypical appearance
- <u>Adjuvant Radiation Therapy (beta emitter)</u>
- Adjuvant Topical: Mito-C, 5-FU
- Laser or Thermal Cautery
- PDT

Lucite Shield

74

1011042

3

clar.

Strontium-90

Table 5. Summary of selected treatment results of pterygium

	Number of	2		
Authors/year	lesions	Dose	Recurrence	Comments
<mark>Schultze</mark> et al 1996 <mark>(16)</mark>	64	5 Gy x 6	12.5% (median f/u5.5 years)	0% recurrence for primary lesions treated within 3d after surgery
Paryani et al 1994 <mark>(14</mark>)	825	10 Gy x 6	1.7% (median f/u 8 years)	No complications with high doses
Dusenbery et al 1992 (<mark>13</mark>)	36 (recurrent lesions)	24 Gy (median) in 2-4 fx's	28%	36% complications, higher if previously irradiated.
Wilder et al. 1992 <mark>(15)</mark>	258	8 Gy x 3	12.8%	
Morselise et al. 1984 <mark>(17)</mark>	135	6 Gy x 3	7.4%	Relatively low doses were used
Alaiz-Calamino et al. 1982 (<mark>4)</mark>	485	7-8 Gy x 4	4.3%	
Van Den Brenk et al. 1968 (<mark>5</mark>)	1300	8-10 Gy x 3	1.7%	Largest number reported

Keloids

- Non-cancerous fibrous proliferations that occur in the dermis after trauma or injury to the skin
- Keloids grow beyond the boundaries of the original wound site (vs. hypertrophic scar)
- Etiological factors that determine how a scar becomes a keloid remain unknown

Keloids

- Individuals with darker-pigmented skin or who freckle are more predisposed
- Africans, African-Americans, Hispanics, and Asians
- Familial/genetic predisposition
- Immunological causes

Treatment

- Surgical excision alone
 Often recur
- <u>Adjuvant Radiation Therapy</u>
- Post-surgical treatment agents:
 - Intralesional corticosteroid injection
 - Mitomycin C solution
 - The dietary compound quercetin
 - Imiquimod 5% topical cream
 - Topical silicone gel sheets

Table 6 Summary of selected treatment results of keloids WLE-wide local excision; RF-relapse free.

Study	No. pts	Cohort	No. lesions	Dosage implemented (Gy)	Response rate (%)	Notes/findings
Malaker et al. 2004 (<mark>12)</mark>	64	RT alone	86	37.5 /5fx	97	Unresectable keloids; 63% satisfied with outcome.
Ogawa et al. 2003 (<mark>9</mark>)	129	WLE + RT	147	15 /5fx	67	
Ragoowansi et al. 2003 <mark>(13</mark>)	80	WLE + RT	80	10 /1fx	84	100% RF at 4 weeks 91% RF at 1 yr 84% RF at 5-years
Maarouf et al. 2002 <mark>(11)</mark>	100	WLE + RT	134	9-15 /3-5fx	84	
Klumpar et al. 1994 (<mark>10</mark>)	83	WLE + RT (electrons vs orthovoltage)	73 53	varied	85 79	Electron beam = orthovoltage therapy
Doornbos et al. 1990 (<mark>4</mark>)	203	RT or WLE +RT	278	4.5-18 /varied fx	74	Recommended dose \geq 9: 9 Gy LC 70.4% 6 Gy LC 36%.
Lo et al. 1990 (<mark>5)</mark>	199	WLE + RT	354	2-20 Gy /1fx	87% (≥9 Gy); 43% (<9Gy)	Difference non-significant statistically.
Sallstrom et al. 1989 (14)	124	WLE + RT		18 /3fx	92	93% satisfied at 24 months

Gynecomastia

- Enlargement of the male breast due to hormonal imbalance (rel. [estrogens)
- Physiologic; seen at puberty or old age
- Pathologic; associated with cirrhosis, functional testicular tumours, certain drugs (alcohol, marijuana and anabolic steroids)

- Associated with increased levels of estradiol and decreased levels of testosterone
- The majority of patients will present with:
 - nipple tenderness and sensitivity

Gynecomastia

- Observation
- <u>Radiation</u>
- Pharmacotherapy
 - Estrogen receptor modifiers (tamoxifen or raloxifene)
 - Aromatase inhibitors
- Surgical Correction

Table 7. Summary of selected treatment results of gynecomastia

Author, Year	Total # Patients	Dose	Results	Comments
Widmark et al. 2003 (<mark>10</mark>)	253 (randomized, RT vs. no RT)	12-15Gy /1fx	Gynecomastia rate: 28% vs. 71% (p<.001)	Prophylaxis
Tyrrell et al. 2004 (<mark>11</mark>)	106 (randomized, RT vs No RT)	10Gy /1fx	Gynecomastia rate: 52% vs. 85% (p<.001)	Prophylaxis
Van Poppel et al 2005 (<mark>12</mark>)	27 w/gynecomastia 38 with pain	12 Gy /2fx	Gynecomastia improved or resolved 33%; Breast pain improved or resolved 39%	Treatment
Fass et al. 1986 (<mark>13)</mark>	87	12-15 Gy /3 fx	Lower rate of gynecomastia with RT	Prevention; No long-term complications seen

Langerhans cell histiocytosis

(Langerhans cell granulomatosis, Histiocytosis X)

- Abnormal clonal proliferation of Langerhans cells
- Children mostly
- Adults
- Incidence: 0,5-1 case /100 000 a year
- Localization: <u>bone (pain, fractures, vertebral</u> <u>collapse)</u>, soft tissues
- Skin; lungs adult smokers
- LN, liver, BM
- Mortality variable

Background

- Eosinophilic Granuloma (80%)
 - Localized benign form
 - Isolated to bone
- Hand-Schuller-Christian disease (15-20%)
 - Skull lesions
 - Exopthalmos
 - Diabetes Insipidus
- Letterer-Siwe disease (>10%)
 - Disseminated lesions involving multiple visceral organs

Treatment

- Systemic Chemotherapy
- Topical steroid, Intralesional injection of steroids, NSAID
- Local Radiation Therapy
- Phototherapy
- Stem cell transplantation,

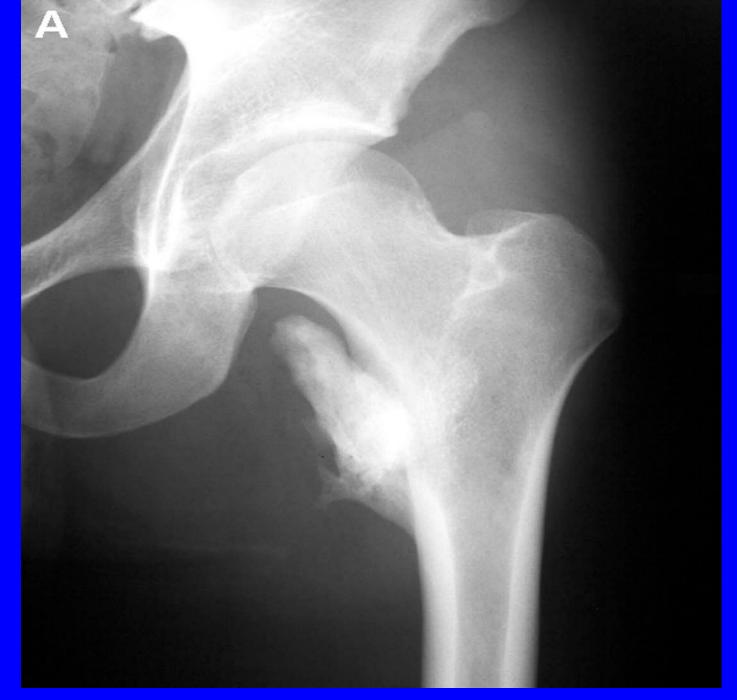
"punched lesion"

Table 9. Summary of selected treatment results of Histiocytosis

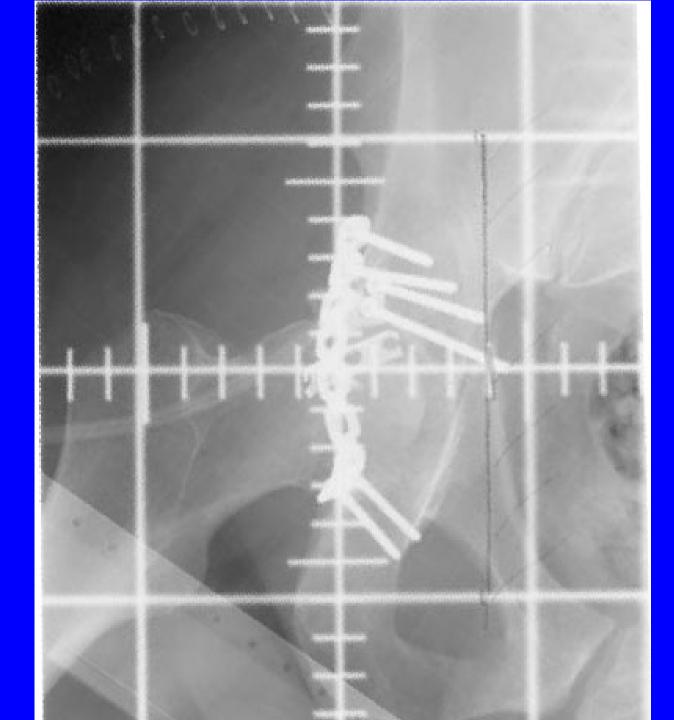
Authors, year	Number of patients	F/U	Treatment	Outcome	Comments
el-Sayed et al. 1992 (26)	15	1-20 yrs	Low doses RT	14/15 bone CR; 2/2 (DI) responded	
Selch et al. 1990 (25)	22 (40 bony, 16 soft tissue sites)	1-13 yrs	6-26 Gy Med 9 Gy bone Med 15 soft tissue	LC 82% Bone 88% Soft tissue 69%	Pediatric LC 100%
Minehan et al. 1992 (41)	47 diabetes insipidus	Med 14.7 years	10-11 Gy mean (hypothalamic-pituitary RT vs. no RT)	RT: 22% CR and 14% PR No RT: 0% CR/PR	Actuarial survival at 40 yrs was 65%
Rosenzwei et al. 1997 (41)	14 diabetes insipidus	7.3 yrs		14% CR	Early disease responded
Jahraus et al. 2004 (38)	24	Med 28 months	3-20 Gy /varied fx sizes	1.8-2.0 Gy/fx: score 1.29 <1.8 Gy/fx: score 2.1 (p=0.013)	Recommended fx >1.8Gy

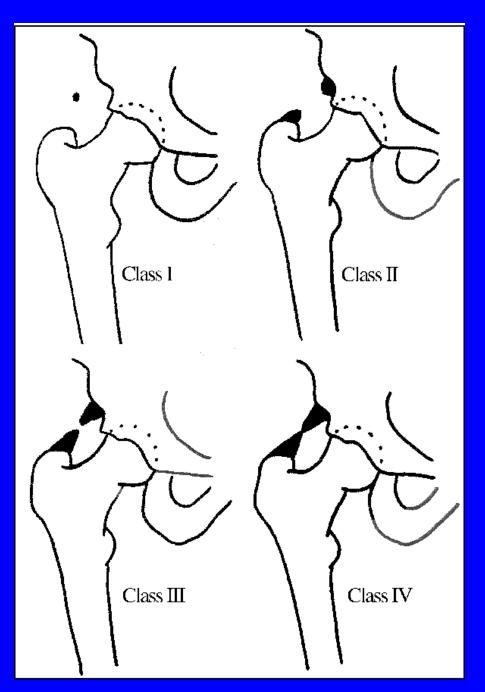
Score system: 1=CR, 2=>50% PR, 3=<50% PR, 4=NR; CR-complete response, PR-partial response, NR-no response; Rt-radiation therapy; fx-fraction; med-median; DI- diabetes insipidus; yrs-years.

Heterotopic Ossification (HO)


- After surgery or trauma
- Hips, legs, elbows, shoulders, jaw...
- Varying severity
- 50%-90% developed HO following a hip arthoplasty
- Mechanism is unknown
- Symptoms: warm, tender, swelling and decreased ROM

Treatment

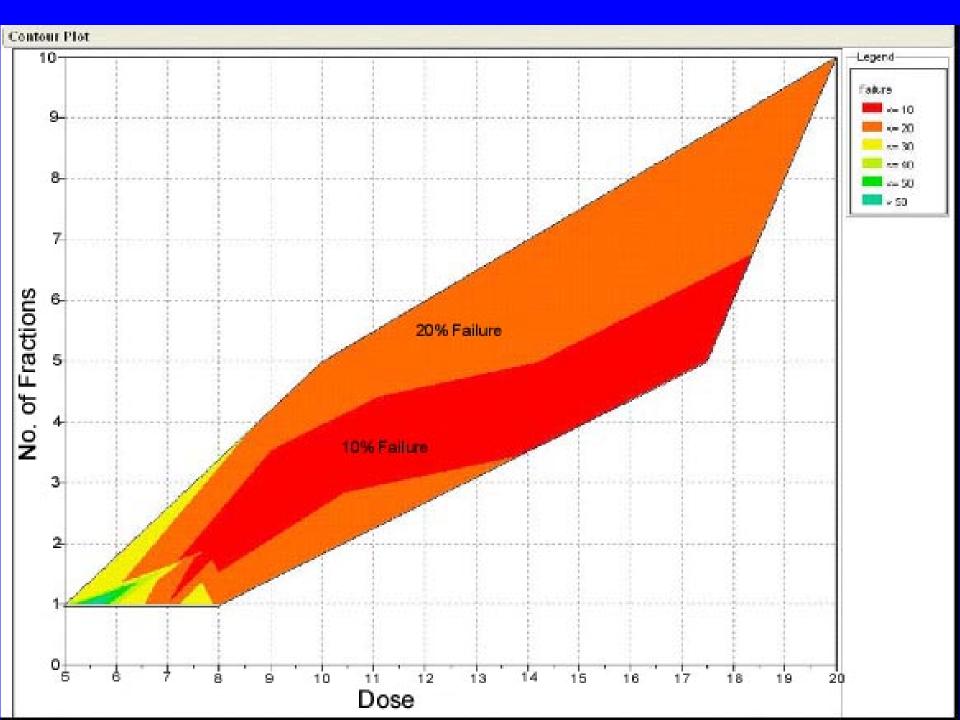

- Prophylactic radiation therapy
 7-8 Gy in a single fx, 24–48 hrs of surgery
- Antiinflammatory agents


 Indomethacin, Ibuprofen and Aspirin
- Range of motion exercises

 adjunct to pharmacological treatments

http://ajs.sagepub.com/content/34/12/2022/F3.expansion.html


The Brooker Classification of Heterotopic Ossification around the hip joint.


Class I has islands of bone within the soft tissues.

Class II has bone spurs from the pelvis or proximal end of the femur, leaving at least 1 cm between opposing surfaces.

Class III has bone spurs from the pelvis and/or proximal end of the femur, reducing the space between opposing bone surfaces to less than 1 cm.

Class IV shows apparent bone ankylosis of the hip

Peyronie's disease

- Development of fibrous plaques or nodules in the substance of the penis
- Pain, lump formation, deformity of the penis on erection, and impotence
- Cause of this disease is not known

Treatment

- Reduce pain & stop the progression of the fibrotic process
 - Oral medications
 - Radiation therapy
 - Topical applications
 - Electrical therapy
 - Ultrasonic treatment
 - Locally injectable agents

Wax-coated -Lead shields

Table 11. Summary of selected radiation treatment results of Peyronie's disease

Author year	# Pts	RT treatment	Outcomes	Comments
Incrocci et al. 2000 (7)	# FIS 179	13.5 Gy /9fx x-rays or 12 Gy /6fx electrons	Pain relief 83% Deformity improved 23% Sexually active 72% Erectile dysfunction 48% Dissatisfied 49%	82% responded to questionnaire regarding sexual functioning. 29% had post-RT penile surgery.
Koren et al. 1996 <mark>(8)</mark>	265	Iridium-192 moulage	"Success" 66.4% fibromatous foci: CR 9% PR >50%: 29.7% PR <50%: 27.7% Pain relief: 61.4%	Both pain relief and regression of deviation correlated w/ improved erectile function. 41 pretreated w/ potassium p- aminobenzoate, vitamins, topical corticosteroids, or XRT
Rodrigues et al. 1995 <mark>(11)</mark>	38	9 Gy /5fx x-rays Reirradiation for minimal response: 9 Gy /5fx (16 patients)	Pain relief 66% (CR 12%, PR 54%) Improved Curvature 40% Sexual function 47% Plaque: CR 24%, PR 8% Re-rradiated group: Pain relief 25% Improved Curvature 28% Sexual function 28%	Pre-treated w/Vitamin E. No RT morbidity. Vitamin E effects not clear
Viljoen et al. 1993 <mark>(13)</mark>	98	25 Gy (10 x 2.5 Gy), 250 kV x-rays	Pain relief : 84% Angulation improved:38.6%. Sexual function: 87.2%	Progression in 18%. Decline in sexual activity appeared age-related.
Alth et al. 1985 <mark>(1)</mark>	636	Radium mold 6.6 - 8.2 Gy	Induration improved 70-85% Deviation improved 33-53% Pain relief 83-90%	
Mira et al. 1980 <mark>(9)</mark>	56	1000-1400 R	ReliefCRPRInduration6%38%Curvature5%33%Pain51%28%	Less benefit if persistence >5 months

Cardiovascular Disease

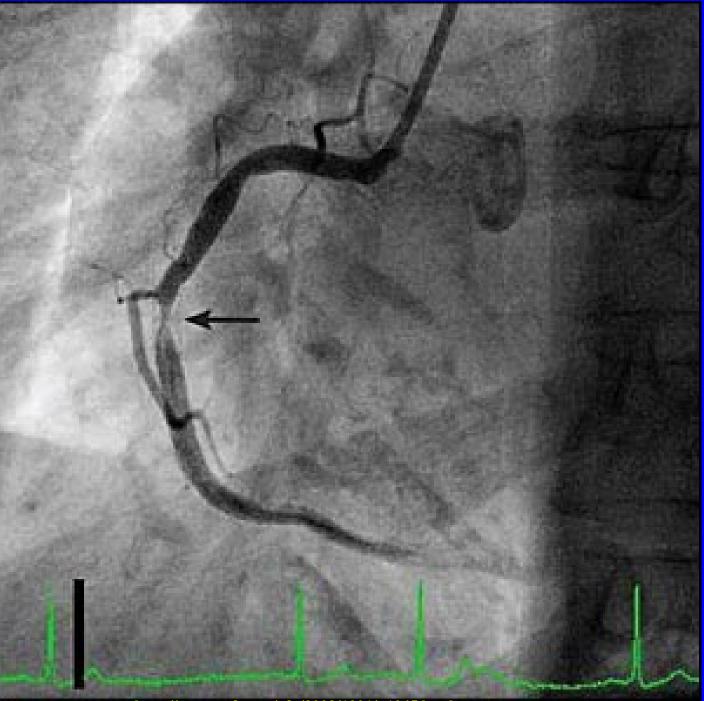
- Heart and circulatory disease are the biggest killers.
- In US, cardiovascular disease caused over 50% of deaths for men in the US, and killed over 600,000 people.
- Coronary arterial disease causes about 380,000 deaths a year : approximately one in four deaths in men and one in six deaths in women.
- Total cost \$108.9 billion each year in the United States

Revascularisation techniques

- Coronary Artery Bypass Graft (CABG)
- Percutaneous Coronary Intervention (PCI)
 - Angioplasty
 - Plus stenting
 - Drug-eluted stents
 - Endovascular brachtherapy

The problem with stents.

Restenosis.


Rate depends on lesion type, length and severity

Hydraulic Delivery

repid source movement

Delivery Catheter dedicated source lumen. defined treatment area

Right coronary artery: severe narrowing within a previous bare-metal stent.

http://www.aafp.org/afp/2009/1201/p1245.html

Table 8. Summary of selected treatment results of endovascular coronary radiation

				Restenosis Rates	
Randomized Trials	No. of patients	Source	F/U	Control	Treated
START 2002 (<mark>5)</mark>	476	Sr-90/Y-90	8 months	41%	14%
INHIBIT 2002 <mark>(6</mark>)	162	P-32	9months	52%	26%
SVG-WRIST 2002 <mark>(4</mark>)	120	Ir-192	12 months	44%	21%
GAMMA-1 2001 <mark>(3</mark>)	252	Ir-192	6 months	51%	22%
SCRIPPS 2000 <mark>(12)</mark>	55	lr-192	3 yrs	64%	33%
WRIST 2000 (<mark>2</mark>)	130	Ir-192	6 months	58%	19%
PREVENT 2000 (<mark>13)</mark>	105	P-32	6 months	39%	8%

Which one runs faster: a fat cabbage or a skinny carrot?

A cabbage is always "a head" !

QUESTIONS?